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Abstract—In this paper, we propose a distributed frequency reg-
ulation framework for prosumer-based electric energy systems,
where a prosumer (producer-consumer) is defined as an intelligent
agentwhich can produce, consume, and/or store electricity. Despite
the frequency regulators being distributed, stability can be ensured
while avoiding inter-area oscillations using a limited control effort.
To achieve this, a fully distributed one-step model-predictive con-
trol protocol is proposed and analyzed, whereby each prosumer
communicates solely with its neighbors in the network. The efficacy
of the proposed frequency regulation framework is shown through
simulations on two real-world electric energy systems of different
scale and complexity. We show that prosumers can indeed bring
frequency and power deviations to their desired values after small
perturbations.

Index Terms—Distributed frequency regulation, distributed
optimization, long-term freqeuncy stability, model-predictive
control, prosumers.

I. INTRODUCTION

T ODAY’S electric power systems are operated and con-
trolled in a hierarchical way under which monitoring and

control tasks are handled at different hierarchical levels. How-
ever, emerging technologies such as renewable energy sources,
distributed generators (DGs), plug-in hybrid electric vehicles
(PHEVs), and demand response, pose new challenges to the op-
eration and control of legacy electric power systems due to the
increased scale and complexity. In fact, it will no longer be pos-
sible for control centers and SCADA (supervisory control and
data acquisition) systems to fully monitor and control emerging
electric energy systems.
To overcome these challenges, it is envisioned that future,

smart energy grids will be populated with multiple decision
makers. Each such decision maker, or agent, will be able to pro-
duce, consume, and/or store electricity, as well as make strategic
decisions enabled by deployment of communication and infor-
mation technologies. These economically motivated agents are
known as prosumers (producers-consumers) [1]. Under the pro-
sumer-based framework, electric energy systems are largely flat
[2] in that small prosumers, such as individual buildings with
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energy management systems, share the same functionality as
large prosumers, such as regional utilities, but at the smaller
scale. The challenges are thus how to gracefully extend the cur-
rent control and management paradigm to energy-systems com-
prised of prosumers, where the control objectives of the indi-
vidual prosumers are similar, although more advanced, to those
associated with traditional control centers.
In this paper, we address one particular, technical aspect

of the prosmer-based energy systems, namely the frequency
regulation problem. We propose a general framework for
distributed frequency regulation in prosumer-based electric
energy systems and address the problem of how thousands of
spatially distributed and heterogeneous prosumers can regulate
frequency in a distributed and robust manner. To this end,
we first review today’s practices for regulating frequency and
balancing mid-term hard-to-predict fluctuations in load.
The rest of the paper is organized as follows: In Section II,

today’s industry practices for frequency regulation are revisited
and the prosumer model is introduced, followed by a general
framework for distributed frequency regulation in Section III.
The simulation results for distributed frequency regulation
on two real-world electric energy systems are presented in
Section IV, and the paper concludes in Section V with discus-
sions of the overall findings.

II. TODAY’S INDUSTRY AND BEYOND

In today’s electric power industry, hard-to-predict fluctua-
tions in demand and renewable energy production are stabilized
by means of governor control of fast-ramping power plants.
These fluctuations cause steady state errors in frequency and tie-
line flows. In order to bring steady state frequency to the nom-
inal value1 and tie-line flows to their scheduled values, it is es-
sential to regulate frequency minute-by-minute. To achieve this,
automatic generation control (AGC) systems are used to adjust
set-points of the governor control of fast-ramping power plants
at a regional level. The implementation of such AGC systems to
regulate frequency requires centralized communication/control
systems, while for smaller systems, such as micro-grids, a few
fast-ramping generators can be equipped with integral control
systems to regulate frequency directly [3].
Decentralized frequency regulation is already employed by

utilities and area-controls in an ad-hoc fashion by reacting to
local frequency measurements and then adopting unilateral cor-
rective control actions, i.e., actions that neglect the effects of
coupling between neighboring utilities/area-controls. It is well-
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known that the lack of coordination between the AGC systems
of neighboring utilities/area-controls may cause inter-area os-
cillations and potentially lead to instability problems. In the
worst-case scenario, inter-area oscillations can result in black-
outs [4].
Much research has been done to mitigate this, and several

methods have been proposed to overcome inter-area oscilla-
tions [5], [6]. Although the proposed methods could increase
the damping of inter-area modes, they do not guarantee system-
wide stability, which is an explicit aim in this paper.
Recently, there have been proposals to mitigate inter-area

oscillations by means of wide-area monitoring and control
(WAMC) systems based on synchronized phasor measure-
ments [7].
The implementation of WAMC systems requires extensive

hierarchical communication/control infrastructure. This makes
centralized control systems more vulnerable to cyber-attacks,
meaning that the power systems will have a single point of
failure. To remedy this, we propose a new distributed frequency
regulation framework for prosumer-based electric energy
systems. In order to ground the technical discussion, we first
describe what is meant by a prosumer-based electric energy
system.
Traditionally, electric power systems are divided into genera-

tion, transmission, distribution, and consumption sections. Each
section is strictly producing, transporting, or consuming elec-
tricity. As already discussed in the introduction, the boundary
between producers and consumers will become increasingly
blurry as emerging technologies allow consumers to produce
and/or store electricity. Therefore, the conventional producers
and consumers transform into hybrid agents that we denote
“prosumers”.
A prosumer can be an independent system operator (ISO),

a utility, a microgrid, or even a building. All prosumers will
have to have a physical layer, a control layer, and a communi-
cation layer, where the physical layer includes physical devices
inside a prosumer, such as generators, loads, and wires [1]. The
control layer consists of the computation center and control de-
vices of the prosumer. The communication layer allows the pro-
sumer to communicate with its neighbors and to share key local
information.
Prosumers have multiple controllable components, such as

deferrable loads, storages, PHEVs, distributed energy resources
(DERs), and/or conventional power plants. For the purpose of
this paper, prosumers can regulate frequency by adjusting set-
points of the controllable components. Since all prosumers are
coupled through the grid, the control strategy of a prosumer will
inevitably have to depend on the behaviors of other prosumers.
Therefore, a coordinated control framework needs to be imple-
mented in order to achieve system-wide stability with minimal
control effort. This is the topic of the next section.

III. DISTRIBUTED FREQUENCY REGULATION

In this section, we investigate how prosumers can optimize
the system-wide performance index by iteratively communi-
cating key local information so that the entire system converges
to the nominal values, in order to
1) achieve system-wide frequency stability;

2) avoid inter-area oscillations;
3) minimize system-wide control effort;
4) reduce the required amount of sensing and communication.
The proposed solution that satisfies all of these objectives will
be based on a variation on model predictive control (MPC),
where the look-ahead horizon is limited to a single step in order
to limit the need for information sharing [8]. But, before we can
arrive at this formulation, we first need to pose the frequency
regulation problem.

A. Quasi-Steady State Dynamic Model

Recalling from previous sections, frequency regulation in-
volves bringing the steady state frequencies at the individual
prosumers to 60 Hz, or, more generally, to . We moreover
need to achieve this in a distributed manner, and we start by ob-
serving that, once the so-called primary control dynamics have
been stabilized, the quasi-static description of the frequency at
prosumer satisfies the three-way droop equation [9]

(1)

where is the deviation in frequency
at prosumer from the desired frequency at time step , whose
internal dynamics is characterized at steady state by the param-
eter . Moreover, is the reference set point, which is going
to act as our control input, is the deviation in output power
from the scheduled interchange, and is the droop constant of
prosumer , which in essence acts as a proportional control gain
in the droop controller. For a treatment of the three-way droop
equation, see for example [9].
Gathering together the contributions from all prosumers in

the network as ,
and , yields

(2)

where and .
As both and are diagonal, this formulation seems to in-

dicate that there is no coupling whatsoever between prosumers.
This is of course not the case, and the prosumers are indeed
coupled through the power grid via the output powers. We can
express this coupling by relating the active power injections to
the bus angles across the grid

(3)

Here is the Jacobian matrix for real powers and voltage
angles of the grid, whose entries are functions of the suscep-
tances and conductances of the grid and those of the voltage
magnitudes and angles of the prosumers. This matrix contains
the structural information about the grid, i.e., is not diag-
onal, and is a vector containing the de-
viations in voltage angles from the scheduled voltage angles of
the individual prosumers.2 Note that in this formulation, we as-

2In the terminology of graph-based, distributed control, the Jacobian is a
weighted Laplacian. For the purpose of small changes in frequency, the Jaco-
bian matrix can be assumed to be constant.
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sume that the sensitivity of real powers with respect to changes
in voltage magnitudes is negligible. That is,

(4)

where represents the infinity norm of the indicated ma-
trix.
The model we will be considering is a discrete-time model,

as is appropriate for the quasi-static models and is standard in
the frequency regulation literature, e.g., [9]. The relationship
between voltage angle and frequency becomes

(5)

given the sample time . The time scales under consideration
when doing frequency regulation is at the order of tens of sec-
onds or a minute, i.e., a typical value for would be 30 seconds
[9].
Gathering all these terms together and setting give

where is the identity matrix. As such, if we let the state
of the system be the more conventional , the
discrete-time, quasi-static state-space model for the prosumer
dynamics becomes

(6)

where the systemmatrices (the systemmatrix and control matrix
of the grid) are

(7)

(8)

As a final note, this model allows for the prosumers to be
heterogeneous in the sense that they can support different tech-
nologies, such as renewable energy sources, DGs, conventional
power plants, demand response, and/or PHEVs.

B. Model-Predictive Control

The aim of the prosumers from the frequency regulation point
of view, is to drive the steady state frequencies and power levels
to the desired values. Moreover, this must be achieved in a dis-
tributed manner, where information is confined to flow among
prosumers that are adjacent in the information exchange net-
work.We can view this as an optimal control problem, where the
prosumers collaboratively try to minimize the global quadratic
cost function

(9)

where is the current time at which the minimization takes
place, is the look-ahead horizon (finite or possibly infinite),
and and are diagonal, positive definite weight matrices.3

If the distributed nature of the problem is not important, the
solution, if it exists, to the discrete-time LQ problem is given by

(10)

where the gain matrix is obtained by solving an appro-
priate Riccati equation, and where is constant in the infi-
nite horizon case. Unfortunately, does not in general have
the same sparsity structure as or , i.e., is not a
distributed solution. But can we turn this somehow into a dis-
tributed solution?
As a first observation, since the information exchange

network over which the prosumers interact is an undirected
and connected network, its transitive closure 4 is a complete
graph—or fully connected network. This implies that the
conditions prescribed in [10] are met, i.e., the information
exchange network is sufficiently rich relative to the system
dynamics to be quadratically invariant, which in turn implies
that a distributed version of is obtainable in a com-
putationally efficient way (the problem is convex). However,
obtaining this distributed solution requires that the centralized
has been obtained, which implies complete knowledge of

and , which is something that we cannot always ask of the
prosumer network.
As such, solving the distributed MPC problem using

quadratic invariance is not possible in this particular case. In-
stead, we have to go directly to the MPC formulation [11], [12].
However, what makes distributed optimal control harder than
distributed optimization, is that it requires predictions into the
future. In order for prosumer to predict its state one step into
the future, it needs to know its neighbors’ states. To see this,
we note that , where the network
sparsity structure is encoded in the and matrices. To predict
two steps into the future, it needs to know its neighbors’ neigh-
bors’ states, since ,
where means that information from two hops away are
needed, and so forth for larger prediction horizons. This means
that as long as the time horizon is long enough, knowledge
is required of all prosumers’ states, which is not a scalable
proposition, as shown in [13].
One possible remedy to this problem is to turn the MPC

problem into an optimization problem by simply letting the
time horizon be one. The benefit from this is that individual
prosumers only need to know their neighbors’ states. However,
the drawback is that the approach is not always guaranteed
to achieve system stabilization. In the next subsection, we
explore conditions under which the one-step MPC can stabilize
the system. And, we note that this is indeed the key technical
contribution of this paper—an investigation of whether or not
distributed frequency regulation is possible when restricting the

3Note that in general these matrices do not need to be diagonal as long as
they are positive definite, but in the prosumer network, we insist on this since
we only care about individual deviations from the schedule rather than couplings
through cost weights.
4The transitive closure of a graph is a graph which contains an edge between

any two vertices which are connected in the original graph through a path.



HONARVAR NAZARI et al.: DISTRIBUTED FREQUENCY CONTROL OF PROSUMER-BASED ELECTRIC ENERGY SYSTEMS 2937

information flow and, subsequently, the length of the prediction
horizon.

C. One-Step MPC

Before we can attempt to solve the distributed MPC problem
over a single time step, we need to fundamentally understand if
it is doable to stabilize the system by one-step MPC. What we
want to do is to minimize

(11)

Now, from the theory of MPC we know that as long as the
system is completely controllable, there exists a positive defi-
nite that renders the closed-loop system stable when driven
by the minimizing solution [14]. In fact, assuming that

is a stabilizing, nominal solution, the optimal solution
to the one-step MPC is stabilizing as long as and jointly
satisfy the discrete-time Lyapunov equation

Once this has been obtained, the optimizing solution can be
computed. But, this computation requires—as was also the case
with quadratic invariance—a centralized computation.
But, since , we can set

and and reformulate (11) as

(12)

Note that, at time is given (the current state), which is why
we use this as a subscript to the cost rather than as a decision
variable.
The minimizing is found by letting

(13)

i.e.,

(14)

The closed-loop dynamics becomes

(15)

As a direct consequence of this, we have the following result:
Lemma 3.1: The minimizing controller to (11) asymptoti-

cally stabilizes the system if and only if for all eigen-
values to

But, this condition is not checkable by the individual pro-
sumers. Instead, we can do better by first observing that by
making significantly “larger” than , the control cost goes
down, allowing for potentially large control signals that will sta-
bilize the state. An instantiation of this observation could be to
let and , and then make small, in which case
the closed-loop system matrix becomes

(16)

Taking the limit as goes to zero from above yields the
so-called Tikhonov Regularization [15] of the Moore-Penrose
pseudo-inverse

(17)

which in turn yields

(18)

As such, an existence condition that is slightly easier to check is
Lemma 3.2: There exist diagonal, positive weight matrices

and such that theminimizing controller to (11) asymptotically
stabilizes the system if for all eigenvalues to

(19)

As a final observation, we note that is the orthogonal
projector onto the range of , i.e., is the orthogonal
projector onto the kernel of . In other words, if is an eigen-
vector to such that then

(20)

and a direct consequence of this is
Corollary 3.1: There exist diagonal, positive weight matrices
and such that the minimizing controller to (11) asymptot-

ically stabilizes the system if has full rank.
Now, this corollary is not, as a first attempt, particularly

useful. It is well-known that the Jacobian matrix for real
powers and voltage angles of electric power girds is singular
[16] and that has rank , i.e., the corollary does not
apply. But even worse than that, the centralized solution is also
not achievable since the system is not even controllable, i.e.,
the controllability matrix is rank deficient:

As a result, the system model has a one-dimensional, subspace
where the behavior is not controllable. The way around this co-
nundrum is through the introduction of the reference bus (slack
bus). In the next section we do this through a singular perturba-
tion technique that mitigates the controllability problem.

D. Singular Perturbations for Controllability

As observed, the frequency regulation problem is not fully
controllable. This is known as the structural singularity in the
literature [16], and one way in which this is remedied is by in-
troducing a so-called slack bus that absorbs any excess power or
meets any excess demands. In practice, what this corresponds to
is a generator with very large inertia.Mathematically, thismeans
that one bus is removed from the system dynamics, i.e., if bus
is the slack bus, then column and row in the Jacobian is
removed, resulting in a full rank Jacobian and, subsequently, a
completely controllable system as well as a full rank matrix.
We do not necessarily want to go this route since it is es-

sentially a centralized way of solving the frequency regulation
problem. Instead, we introduce a singular perturbation approach
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for achieving the same results. We start with the assumption that
each prosumer with large inertia has the ability to balance power
and self-select as a slack bus. Moreover, we assume that there
is at least one such prosumer present in the network.
As such, let be the set of prosumers that act as

slack buses, and be the excess power absorbed/generated
by the prosumer . The sensitivity of , with
respect to changes in the voltage angle of prosumers is very
small and it is related to the inverse of the inertia

(21)

where is the inertia of prosumer , and is a small positive
number. What (21) says is that the sensitivity of slack power
at prosumer with respect to changes in the voltage angle of
prosumer is on the order of , and zero with respect
to changes in the voltage angle of other prosumers.
Combining (3) and (21) leads to a new formulation for the

Jacobian

(22)

where is the old Jacobian, and is a diagonal matrix whose
th entry is zero if prosumer is not a slack bus, and non-zero

if prosumer is a slack bus. And, as long as there is at
least one slack bus, the Jacobian is non-singular. However, the
new Jacobianmatrix has the same sparsity structure as the initial
Jacobian matrix. Note moreover that this formulation is entirely
consistent with the single slack-bus scenario, in which case
has a single non-zero entry associated with the slack bus.
Adding the new Jacobian matrix to (7) and (8) leads to a new

system matrix and control matrix for the grid and .
Both of these matrices have full rank and, as such, the condition
in Corollary 3.1 is satisfied. This has two direct implications,
namely 1) there are diagonal weight matrices such that the one-
step MPC has a stabilizing solution, and 2) each prosumer can
pick their state weight “large” and their control weight “small”
and the resulting solution is stabilizing. But, just because there
exists a stabilizing solution it does not follow that the prosumers
can obtain it in a distributed manner, which is the topic of the
next subsection.

E. Distributed One-Step MPC

As the one step MPC problem has a stabilizing, minimizing
solution, we can now move on to actually solving this problem
in a distributed manner. As the cost is convex, we have access
to a rich literature on distributed optimization for convex costs
(see for example [17] for a representative sample). Note, how-
ever, that a shorter horizon in MPC problems runs the risk of
introducing oscillations in the trajectories, so just because we
have a stabilizing solution it does not follow that we have a good
solution, which is something we have to keep in mind when ap-
plying the controllers to the frequency regulation problem.
The problem that we have to solve in a distributed manner is

the following:

(23)

where is the set of prosumers, subject to cou-
pling constraints

(24)

here is the set of prosumer ’s neighbors, and the system
matrices are .5 For the sake of sim-
plicity, we drop in our notations onward and indicate
and by and , respectively.
To solve this optimization problem in a distributed way, we

use Alternating DirectionMethod ofMultipliers (ADMM) [17].
ADMM is known to converge for convex optimization prob-
lems with non-empty closed feasible sets and finite optimal so-
lutions [17], which is the case for our problem. Because we de-
sire a distributed formulation, we assume that each prosumer
does not have direct access to the decision variables of other pro-
sumers. Therefore, as described in [18], the coupling constraint
at prosumer can be reformulated by adding a new term, which
represents the perception of prosumer from the control ac-
tion of prosumer (neighboring prosumer). We call this percep-
tion and set the matrix of decision variables as

and . Therefore, the one-step MPC is
recast as follows:

(25)

where , and are the th rows of and matrices,
respectively. In addition, is a column vector, which includes

. Constraints in (25), guarantee that prosumer
has a correct perception from the control strategy of its neigh-
bors.
By relaxing the constraints, augmenting them in the objective

function, and using ADMM [18], we can iteratively solve (25).
Now, let the augmented Lagrangian function of prosumer at
iteration be

(26)

where is a given penalty factor, and is a column
vector, which includes the average control strategy of prosumer
and that of its neighbors

(27)

Then, the primal and dual residuals and at iteration
shall be updated as

(28)

5Note that the diagonal entries in the weight matrix can be chosen suffi-
ciently small in order to ensure that is a Lyapunov function (since this is a
Lyapunov function in the limit as goes to zero). As such, as long as the states
decrease along each dimension (each prosumer state), stability is ensured, which
constitutes a constructive, as well as distributed, way of selecting the weight ma-
trix .
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Fig. 1. Schematic of distributed frequency regulation architecture, which
demonstrates the communication layer on top of the physical layer.

The dual variables are also updated as

(29)

Fig. 1 shows the schematic of the proposed, distributed one-
step MPC frequency regulation architecture for prosumer-based
electric energy systems. As seen in this Figure, after a pertur-
bation in the prosumer 2, the prosumer communicates with its
neighbors. Then, all prosumers coordinate to stabilize devia-
tions in the grid frequency and those in tie-line flows iteratively.
We propose the distrusted one-step MPC algorithm as

follows:

Algorithm: Distributed One-Step MPC

Step 0. Initialize control variables and dual variables
, for each prosumer ; set .

Step 2. Each prosumer sends to prosumer .

Step 3. Each prosumer computes using (27), and
sends it back to .

Step 4. Each prosumer updates its primal and dual
residuals from (28), and dual variable from (29).

Step 5. For given primal and dual tolerances
and , if and

STOP and output as optimal control

strategy for each prosumer ; otherwise go to Step 6.

Step 6. Each prosumer updates by solving a
self-contained problem of the following form:

(30)

Set and go to step 1.

Note that local constraints such as maximum and minimum
power output, and ramp rates can be included in (30). Without
such constraints, quadratic optimization problem (30) has a
closed form solution as follows:

(31)

Fig. 2. Electrical network of Flores Island [19].

where is a diagonal matrix of size
and . It is worth mentioning that in (31),
only and are changing in each iteration. This significantly
decreases the amount of computation in each iteration.
Note that in designing the one-step MPC control the coupling

between prosumers is already considered. Therefore, the mini-
mizing control is naturally cancelling out interactions between
prosumers and consequently inter-area oscillations are elimi-
nated. This has been demonstrated on the electric power sys-
tems on the Azores Archipelago.

IV. DISTRIBUTED FREQUENCY CONTROL SIMULATION

In this section, the distributed one-step MPC is simulated on
two real-world electric power systems. The first system is the
electric power grid on Flores Island, and the second one is the
electric power system on Sao Miguel Island.

A. Frequency Regulation on Flores Island

Flores is one of the western group islands of the Azores Ar-
chipelago, islands of Portugal, which is located in the middle of
North Atlantic Ocean. The island has small population (approx-
imately 4000 inhabitants) and its average electricity demand is
about 2 MW [19].
The electrical grid of Flores consists of three main load cen-

ters and three mid-size power plants. The load centers are lo-
cated in Santa Cruz, the capital of Flores, in Lajes das Flores,
the second largest community and the harbor of Flores, and in
Ponta Delgada, the third-largest community located along the
northern coast. A diesel power plant whose total capacity is
2.5 MW, and a hydro power plant with an overall capacity of
1.65 MW are located in Santa Cruz. They are producing about
85% of the electricity demand. The rest of the demand is pro-
vided by a 0.65 MW wind power plant located in the center of
the island. Fig. 2 illustrates the schematic of the electric network
on Flores.
Based on the geographical division of the electric power grid,

we split the grid into three prosumers. Each prosumer includes
a power plant. Also, the diesel prosumer is the slack. Fig. 3
illustrates the schematic of the prosumer-based electric power
system on Flores. The data for the electric power system and
that for the quasi-steady state characteristics of the prosumers
are available in [19] and [20].
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Fig. 3. Prosumer-based electric power system on Flores.

Fig. 4. Frequency deviations of prosumers after a perturbation.

We explore the frequency stability of the island in two sce-
narios. In the first scenario, we assume that frequency regula-
tion is done in a conventional way. That is, prosumers do not
communicate with each other. The control center measures fre-
quency deviations locally (at the diesel prosumer) and every 30 s
set points of the prosumers are adjusted in response to devi-
ations in local frequency. This approach can create long-term
stability problems, particularly if more than 50% of the elec-
tricity is produced by renewable energy sources.6 For instance,
Fig. 4 shows a scenario under which prosumers start with im-
balance in quasi-steady state frequency at time zero. The con-
trol actions are calculated using the conventional approach and
set-points of prosumers are adjusted accordingly. Since cou-
pling between prosumers are neglected, after 30 s frequency im-
balance is not eliminated and therefore prosumers need to re-ad-
just their set-points. This process continues until frequency con-
verges to 50 Hz.
In the second scenario, we propose that the frequency stability

of Flores would be guaranteed by implementing the distributed
one-stepMPC.Under the proposed framework, prosumers com-
municates with their neighbors to calculate the optimal control
strategy every 30 s. As shown in Fig. 5, at time zero prosumers
start with frequency imbalance. Then, they calculate their con-
trol action using consensus-based ADMM and implement it al-
most instantaneously. Fig. 5 shows that frequency deviations
converge to 50 Hz after 30 s.

6http://apps1.eere.energy.gov/tribalenergy/pdfs/wind_aktech01_mur-
dock.pdf

Fig. 5. Frequency deviations of prosumers after implementing the one-step
MPC control.

Fig. 6. Convergence rate of the optimization process for each prosumer.

Fig. 6 also illustrates the convergence rate of the optimiza-
tion process. At each iteration, prosumers communicate twice
with their neighbors. First prosumers send their control strategy
and their perception of their neighbors’ control strategy. Then,
prosumers calculate their average control strategy and broadcast
the result.

B. Frequency Regulation on Sao Miguel Island

Sao Miguel is the capital and the largest island of the Azores
Archipelago. It has a population of over 140 000 inhabitants and
its average electricity demand is about 65 MW. The island has a
loop electric power systemwith over 1950 lines and 1900 nodes.
Three large-scale diesel power plants are producing over 60% of
the electricity demand. Also, two large-scale geothermal power
plants are producing about 35% of the demand. The rest of the
demand is provided by ten small-scale hydro power plants. The
data for the electric power system on Sao Miguel is available
in [19] and [20]. We divide the electric power grid of the island
into fifteen prosumers. Each prosumer includes a generator and
many loads located electrically close to the generator. Fig. 7
illustrates a schematic of the prosumer-based electric power grid
on Sao Miguel.
We assume that each prosumer is capable of regulating fre-

quency by adjusting the set point of its generator and/or by ad-
justing its deferrable loads. In addition, each prosumer can com-
municate with its neighboring prosumers. Similar to the pre-
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Fig. 7. Prosumer-based electric power system on Sao Miguel.

Fig. 8. Frequency deviations of prosumers on Sao Miguel after implementing
the one-step MPC control.

vious case, we assume that prosumers start with frequency im-
balance at time zero. Then, prosumers calculate their optimal
control actions using consensus-based ADMM and implement
them almost instantaneously. Fig. 8 shows how frequency devi-
ations converge to 50 Hz after 30 s.

V. CONCLUSION

In this paper, we proposed a new architecture for frequency
control in prosumer-based electric energy systems. The pro-
posed architecture guarantees long-term frequency stability of
electric energy systems; solves inter-area oscillations problems;
minimizes system-wide control effort, and; needs less sensing
and communication compared with today’s centralized commu-
nication/control systems.
We first introduced a new quasi-steady state dynamic model

for heterogeneous prosumer-based power grids and formulated
the frequency regulation problem as a MPC problem. Through
the introduction of slack buses and one-step MPC algorithms,

theMPC problem is indeed solvable in a distributedmanner, and
the distributed one-step MPC was simulated on two real-world
electric power systems on the Azores Archipelago. We showed
that the proposed frequency control architecture could guar-
antee long-term system-wide frequency stability of the islands
and minimize global control efforts.
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